ELECTRONIC REMINDERS
====================
# Ohm's Law
* V = I x R
* R = V / I
* I = V / R
>Voltage = Current(I) x Resistance (Ω=Ohm)
>Units: Volts = Amps x Ohms
## Power's Law
* P = V * I
>Units: Watts = Volts x Amps
* P = I² * R
* P = V² / R
* R = P / I²
* I = √P / R
* I = P / V
## Samples
* Computing the resistance:
9V Battery + LED 3.4V using 20mA ==> (9V-3.4) / 20mA ==> 5.6 / (20/1000) => 5.6 / 0.02 => 280 Ω
Power: 9V * 0.02 = 0.18 Watts
9V Battery + LED 3V using 20mA ==> (9V-3) / 20mA ==> 5 / (20/1000) => 5 / 0.02 => 250 Ω
18V Battery + LED 3.4V using 20mA ==> (18-3.4)/(20/1000) => 730 Ω
Power: 18V * 0.02 = 0.36 Watts
## Serie vs Parallel
- In Serie, Voltage drop (consumption increase), but current is constant across the circuit.
- In Parallel, Voltage is constant, but current consumption increase.
## Resistance in serie
-------------
| |
5V Battery ~ R1 100 Ω
| |
| |
| ~ R2 200 Ω
| |
-------------
R = R1 + R2
I = 5V / (100+200)Ω => 5 / 300 => 17mA
Current is constant across the circuit
Voltage Drop
R1: V1 = 17mA * 100 = 1.7V
R2: V2 = 17mA * 200 = 3.4V
1.7V + 3.4V ~= 5V
## Resistance in parallel
-------------
| |
5V Battery I1 /\ I2
| R1 R2 R1 100Ω, R2 200Ω
| \/
| |
-------------
R = 1 / ( (1/R1) + (1/R2) ) => 1/((1/100)+(1/200)) => 66.7 Ω
I = 5V / (66.7)Ω => 75mA
Current is constant across the circuit
Current across resistor
I1 = 5V / 100Ω = 50mA
I2 = 5V / 200Ω = 25mA
50mA + 25mA = 75mA
2 100Ω Resistors in parallel => 100Ω/2 = 50Ω
## RC Circuit - Resistor Capacitor
* Capacitor resist change in voltage
* R x C (Capacitance) = Time
(-t/RC)
* Vout = Vin x (1 - e )
* e = 2.7182
* t = time
* if t==0 then Vout == 0
* What is t when Vout is half Vin?
* t = 0.693 x RC
* At 1 x RC the capacitor is charged at 63.2%
* At 2 x RC the capacitor is charged at 86.59%
* At 3 x RC the capacitor is charged at 95.9%
### Sample
9V Battery + 1kΩ + 470uF + LED (3V, 20mA)
RC = 1000Ω * 470uF == 1000Ω * (470/1000/100) = 4.7 Seconds
RC = 1000Ω * 47uF == 1000Ω * ( 47/1000/100) = 0.44.67 Seconds
* http://en.wikipedia.org/wiki/RC_circuit
## Capacitor in parallel
## Capactor in serie
## Diode
## Examples
* 1V = 1A x 1Ohm
## References
* [wikipedia - Ohm's_law](http://en.wikipedia.org/wiki/Ohm's_law)
* [Voltage current resistance and ohms law](https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law#voltage)
* http://vapor.rigsmedia.com/wp-content/uploads/2012/09/ohms_lawVIPR_relationship.jpg
# Others
## Characters
* √ ¼ ½ ¾ 2º 2¹ 2² 2³ Ω
# Markdown
* http://daringfireball.net/projects/markdown/syntax
Arduino Tutorial
https://www.youtube.com/watch?v=js4TK0U848I&list=PLA567CE235D39FA84
# Voltage Divider
-------------
| |
5V Battery ~ R1 Omh
| |
| ----> Voltage out
| |
| ~ R2 Omh
| |
-------------
Vout = (R2 / (R1+R2)) * Vin
R1 100Omh R2 100Omh => 100/(100+100) * 5v = 2.5v
Light
5v
|
10k Resistor
|
----- Vout
|
* Ligth Censor (Resistor based on light)
Voltage Regulator:
9V -- VR -- 5v
| | |
| | |
*Cap1mF-Gnd--*Cap22mF
Decoupling Capacitor needed
PWM: _ _ _
Pulse With Modulate Signal : _| |_| |_| |_
Transistor:
NPN:
---------
| | |
C B E (Collector, Base, Emettor)
Current flow from C to E based on the state of B is high
PNP: Opposite when B is low current flow
Pull Up/Down Tutorial
http://www.ladyada.net/learn/arduino/lesson5.html
Saturday, April 11, 2015
ELECTRONIC REMINDERS
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment